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In recent work it has been shown that there can be substantial transient growth in the 
energy of small perturbations to plane Poiseuille and Couette flows if the Reynolds 
number is below the critical value predicted by linear stability analysis. This growth, 
which may be as large as O( lOOO), occurs in the absence of nonlinear effects and can 
be explained by the non-normality of the governing linear operator - that is, the non- 
orthogonality of the associated eigenfunctions. In this paper we study various aspects 
of this energy growth for two- and three-dimensional Poiseuille and Couette flows 
using energy methods, linear stability analysis, and a direct numerical procedure for 
computing the transient growth. We examine conditions for no energy growth, the 
dependence of the growth on the streamwise and spanwise wavenumbers, the time 
dependence of the growth, and the effects of degenerate eigenvalues. We show that the 
maximum transient growth behaves like O(R2), where R is the Reynolds number. We 
derive conditions for no energy growth by applying the Hille-Yosida theorem to the 
governing linear operator and show that these conditions yield the same results as 
those derived by energy methods, which can be applied to perturbations of arbitrary 
amplitude. These results emphasize the fact that subcritical transition can occur for 
Poiseuille and Couette flows because the governing linear operator is non-normal. 

1. Introduction 
Linear stability analysis and energy methods are two standard tools for studying the 

stability of viscous channel flows. Linear stability analysis involves examining the 
evolution of small perturbations by linearizing the Navier-Stokes equations and yields 
the Orr-Sommerfeld (0-S) equation. Stability is then determined by examining the 
0-S eigenvalues. If there is an eigenvalue in the upper half-plane, then there is an 
exponentially growing mode and the flow is said to be linearly unstable. This analysis 
has been carried out using both analytical and numerical techniques (Drazin & Reid 
1981). The results show that Poiseuille flow is linearly stable if the Reynolds number 
R is less than R, x 5772 (Orszag 1971) and that Couette flow is linearly stable for all 
Reynolds numbers (Herron 1991). 

Energy methods are based on a variational approach and yield conditions for no 
energy growth for perturbations of arbitrary amplitude. These methods show that 
there is no energy growth if the Reynolds number is less than R, E 49.6 (Busse 1969; 
Joseph & Carmi 1969) and R, x 20.7 (Joseph 1966) for Poiseuille and Couette flows, 
respectively. 

These results do not agree with experimental studies, which show that Poiseuille and 
Couette flows may become unstable at Reynolds numbers as low as x 1000 (Pate1 & 
Head 1969) and x 360 (Lunbladh & Johansson 1991 ; Tillmark & Alfredsson 1992), 
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respectively. In recent years several nonlinear theories, including the secondary 
instability theory, have been developed, giving better agreement with experiments 
(Drazin & Reid 1981 ; Herbert 1988). 

Thus, linear stability analysis gives conditions for exponential instability and energy 
methods give conditions for no energy growth. A shortcoming of these methods is that 
they do not give information when the Reynolds number satisfies R, < R < R,. In this 
intermediate case the energy of a small perturbation decays to zero as t --f 00, but there 
may be transient energy growth before the decay. For two-dimensional perturbations 
to Poiseuille flow, transient growth by a factor as large x 50 can occur (Farrell 1988; 
Reddy, Schmid & Henningson 1993; hereinafter referred to as RSH). This growth 
occurs in the absence of nonlinear effects and can be explained by the non- 
orthogonality of the 0-S eigenfunctions (Orr 1907). In mathematical terms, growth 
occurs because the Orr-Sommerfeld operator, which is related to the Orr-Sommerfeld 
equation, is non-normal. For three-dimensional perturbations, growth by a factor 
O(lOO0) can occur (Gustavsson 1991; Butler & Farrell 1992). 

The purpose of this paper is to investigate various aspects of this transient energy 
growth, often called algebraic growth. Consider a mean flow with velocity U ( y )  in the 
x-direction between infinite plates at y = f 1. Let u = (u, v, w) be the components of the 
velocity of a small three-dimensional perturbation and let 7 = au/az - aw/ax be the 
y-component of the vorticity. Linearizing the Navier-Stokes equations and eliminating 
the pressure, we can express the evolution of the perturbation in terms of u and 7 
(Benney & Gustavsson 1981). We have 

(1) 
av 

v(y  = f 1) = -(j= f 1) = 0, 
aY 

v, 

with initial conditions. Here V2 denotes the Laplacian and R is the Reynolds number, 
defined in terms of the channel half-height and the difference in the velocity between 
the centreline and the wall. 

We simplify these equations by expressing u and 7 as the superposition of Fourier 
modes in the x- and z-directions: 

v(x,  y ,  z ,  t )  = 6(y ,  t )  eiaz+i@z, 

~ ( x ,  y ,  z ,  t )  = f ( y ,  t )  eiaz+i@z. 
(3) 

(4) 

Here a and /3 are positive wavenumbers. Substituting (3) and (4) into (1) and (2), we 
obtain 

-(D2-k2)- = - (D2-k2)20/R+iaU(D2-k2)0- iaD2U6,  ( 5 )  

(6) 

(7) 

where D = a/ay and k2 = a2+p2. Writing ( 5 )  and (6) in vector form (Henningson & 
Schmid 1992), we obtain 

a6 
at 

at 

6(+ 1, t )  = Dfi( If: 1, t )  = f (+  1, t )  = 0, 

- af = -ipDU6-iaUf+(D2-k2)f/R, 
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Zos = - (D2 -k2)-' [(D2 - k2)2/(iR) - aU(D2 - k 2 )  + aD2U], 

21 1 

where (9) 
= PDU, 

L!& = crU-(D2-kk2)/iR. 

The operators gS and gq are called the Orr-Sommerfeld and Squire (Sq) operators, 
respectively. We call the coupling operator and let 9 denote the full block matrix 
in (8). The evolution of a two-dimensional perturbation is determined by the operator 
ZOs. For three-dimensional perturbations, p =k 0, and the normal vorticity is forced by 
the velocity. 

We can write the solution to (8) in terms of an eigenfunction expansion, since the 
eigenfunctions form a complete set (Diprima & Habetler 1969; Herron 1980). Let {A,} 
and {p,} denote the eigenvalues of Zos and gq, respectively. If the eigenvalues are 
distinct, then 

The vector eigenfunctions in the first sum are called the 0-S modes; the functions {Cj} 
are the eigenfunctions of pas, and the functions { f y }  are the forced normal vorticity 
functions corresponding to the velocity functions. The vector eigenfunctions in the 
second sum are the Sq modes, and the functions {f,> are the eigenfunctions of gq. The 
coefficients (A,) and (Bj f  depend on the initial condition 6(y,  0). 

A physically relevant quantity for measuring growth is the energy norm: 

The quantity 1(6112 is proportional to the energy of the perturbation 6. The total energy 
of the perturbation u is obtained by first dividing ll61I2 by 2k2 and then integrating the 
resulting quantity over all a and /? (Gustavsson 1986). The growth function 

measures the greatest possible growth in energy of an initial perturbation at time t. We 
denote the maximum growth for all time as Gmax(a, p, R) _= G""" = supt>o G(t). By 
definition G""" 2 1. There is no energy growth if G""" = 1. 

There has been much work on algebraic growth in viscous channel flows at 
subcritical Reynolds numbers. The focus of much of the early work was on 
degeneracies of the 0-S eigenvalues and exact resonances between the 0-S and Sq 
eigenvalues as possible mechanisms for growth (Gustavsson & Hultgren 1980; 
Gustavsson 1986; Shantini 1989). (An exact resonance occurs if an 0-S eigenvalue Aj  
and a Sq eigenvalue pk coincide.) The motivation for this approach is that if there is 
a degeneracy or exact resonance, then the solution (12) will have additional terms 
of the form texp(-ih,t), suggesting the possibility of algebraic growth even if 
Imh, < 0. Various results on degeneracies and resonances for Couette and Poiseuille 
flows were obtained, but significant energy growth was not found. 

Degeneracies and resonances are not required for growth. Energy growth can occur 
if the operator 9 is non-normal; that is, if it has non-orthogonal eigenfunctions (the 
inner product implicit in this statement is defined in 52). In general, it may be 
inappropriate to analyse the behaviour of a non-normal operator using its spectrum 
alone; see $4  for a description of pseudospectra, an alternative method of analysis 
(Trefethen 1992). Non-orthogonality can lead to coefficients { A j }  and (B,} being much 
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larger than / / 6 ) /  - sometimes by a factor as large as 0(1O1O) (RSH) (here we assume that 
the vector eigenfunctions are scaled so that they have norm 1. If the eigenfunctions 
were orthogonal, then the sum of the squares of the coefficients would equal )1611z). 
Suppose that 6 in (12) has energy 1 and is the sum of terms with large coefficients. At 
t = 0, the large terms approximately cancel. However, for moderate t > 0, (12) is still 
a sum of large terms even if all the exponential terms decay. The initial cancellation 
need not occur, so it is possible for the energy of the perturbation to be larger than its 
initial value. 

In recent work, Henningson (1991) considered the near coincidence of an 0-S and 
Sq eigenvalue, called near resonance, as a possible mechanism for growth for Poiseuille 
flow. He found that the expansion coefficients of an initial perturbation with zero 
normal vorticity can be relatively large and that such perturbations can lead to large 
growth in the amplitude of the normal vorticity. Gustavsson (1991) has investigated 
this scenario for growth for Poiseuille flow in greater detail. He chose the initial 
perturbation to have zero normal vorticity and initial velocity equal to the 
eigenfunction of the 0-S operator associated with the least stable mode. He found that 
the energy in the normal vorticity, the last term in (13), could grow to be O(lOO0) at 
subcritical Reynolds numbers. He showed that the maximum growth in the normal 
vorticity energy for this class of initial perturbation occurs for a = 0 and p z 2 when 
the Reynolds number is fixed. This maximum in the (a,  P)-plane is proportional to R2 
and occurs at a time that is proportional to R. 

The above procedure gives a lower bound for the growth function since a particular 
trial initial perturbation is substituted into (14). A direct estimate of the growth 
function was first performed by Farrell (1988), who investigated growth for two- 
dimensional perturbations to Poiseuille and Couette flows. His method involves a 
finite-difference discretization of 9 coupled with a variational method. This technique 
was extended to examine the growth for three-dimensional Poiseuille, Couette, and 
boundary-layer flows by Butler & Farrell (1992). They show that growth by a factor 
O(lOO0) can occur at subcritical Reynolds numbers. Results similar to Gustavsson's 
are found for the maximum growth G""" for Poiseuille flow in the (a, P)-plane. It turns 
out that the estimated value of G""" at a = 0 and ,4 = 2 is only 10% greater than the 
growth found by Gustavsson. For Couette flow it is found that the maximum energy 
growth is proportional to R2 and that growth by a factor cs 19000 may occur for 
R = 4000. It is shown that G""" is greatest for points slightly off the /l-axis. For both 
flows it is shown that the initial perturbation that achieves the large growth is 
essentially a streamwise vortex. 

The transient growth described above is physically due to the tilting of the mean 
spanwise vorticity towards the normal direction by the normal velocity. This is 
represented by the operator g. Another interpretation, first put forward by Landahl 
(1975), is that of lift-up. The generation of normal vorticity can be related to the 
generation of horizontal disturbance velocities caused by the lift-up of fluid elements 
in the normal direction such that their horizontal momentum is conserved. These 
interpretations are discussed by Henningson (1988) and Gustavsson (199 1). 

The purpose of this paper is to extend the previous work on transient growth at 
subcritical Reynolds numbers for two- and three-dimensional Couette and Poiseuille 
flows. We do this by combining an energy method, a direct method for computing 
growth, and linear stability analysis. Our main goal is to examine the functions 
G(a, /3, R, t )  and Gmax(a, p, R). In particular, we consider (a )  conditions for no energy, 
(b)  dependence of the growth on a and p, (c) the time dependence of the growth, and 
(d) the effects of degenerate eigenvalues. 
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We derive conditions for no energy growth by examining the numerical range of 2, 
defined as the union of all numbers of the form (2$, ij), where 116112 = 1 and (., * )  is 
the inner product associated with (13) (Kato 1976). By the Hille-Yosida theorem (Pazy 
1983; RSH), there is no energy growth if and only if the numerical range of 3 lies in 
the lower half-plane. For each wavenumber combination, we find that there exists a 
critical surface R,(a,p) such that there is no energy growth if R < R1(a,p). We 
compute the critical surface numerically and also derive asymptotic formulae for it. 

Our method for computing transient energy growth is based on the eigenfunction 
expansion (13) and is similar to the method employed by Butler & Farrell (1992). The 
main differences are that we use spectral methods to discretize 2 and that we attempt 
to use as few terms in the eigenfunction expansion as possible. These changes 
substantially reduce the amount of computational work required for the growth 
calculation, enabling us to examine the parametric dependence of the growth more 
closely. 

Using the numerical procedure, we compute Gmax(a, p, R) for two- and three- 
dimensional flows. By extending the approach used by Gustavsson (i991), we show 
that for small a, Gmax(a,p, R) effectively depends on k2 = and aR. Using this 
last result, we show that sup,,i, Gmax(a, p, R) = O(R2) for large subcritical Reynolds 
numbers for both Poiseuille and Couette flows. 

By modifying the eigenfunction expansion (1 3) to include an algebraic term, we show 
numerically that Gmax(a, p, R) is continuous at points in (a, p, @-space where the 0-S 
operator has a degeneracy or where there is a resonance between an 0-S and an Sq 
eigenvalue. 

We also show that the conditions for no growth based on the numerical range of 2’ 
are equivalent to those obtained by applying standard energy methods to the full 
Navier-Stokes equations. This holds because the nonlinear terms in the Navier-Stokes 
equation drop out of the evolution equation for the energy. We show that this 
equivalence implies linear transient growth mechanisms are necessary for subcritical 
transition in Poiseuille and Couette flows. 

The paper is organized as follows. Section 2 briefly examines the operators g,, g,, 
and 2’. Section 3 describes the method for computing growth. In $4 we define the 
numerical range and introduce the Hille-Yosida theorem. We also define the 
e-pseudospectra, a family of sets that can be used to analyse the behaviour of non- 
normal operators. Section 5 derives conditions for no energy growth. Section 6 
summarizes results on the growth function for two-dimensional perturbations in 
Poiseuille and Couette flow. Section 7 presents results on three-dimensional 
perturbations. Section 8 presents a discussion of the results. 

2. The operators .2&, g, and 2 
The operator 4, is a second-order linear differential operator. Its underlying Hilbert 

space is yii, = L2[ - 1,1]. (A Hilbert space is a complete vector space with an inner 
product.) For fl, f z  E yii,, the inner product is defined by 

The domain of %,, which we denote by 9(gq), is the set of functions {$} having a 
second derivative in L2[ - 1,1] and satisfying $( 1) = 0. Using standard results (Kato 
1976), it can be shown that the spectrum of gq consists of discrete points in C. 
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The operator gs can be written in the form g, = 9iA-'d, where 

d = (D2 - k2)'/(iR) - aCT(D2 - k2)  + aD2 U,  

9i = - (D2-k2). 

This operator was studied in the important paper by DiPrima & Habetler (1969). The 
underlying Hilbert space Xo, is the set of functions {$) having a second derivative in 
L2[ - 1,1] and satisfying $( k 1) = 0. For 0, ,  O ,  E Ye,,, the inner product is defined by 

(Cl, C J H  = (DO,, D6,), +k2(0,, C2),. (18) 

The domain 9(gS) is the set of functions in So, having a fourth derivative in 
L2[ - 1, 11 and satisfying $( 2 1) = $'( k 1) = 0. The spectrum of gs consists of discrete 
points in C and the generalized eigenfunctions of g, are complete in Xo,. 

The underlying Hilbert space for 9 is X = Xos x &'& and its domain is 
9(2) = 9(Yo,) x 9(qQ). The inner product is the sum of (15) and (18). Suppose that 
iji = [ O j  4JT E X for j = 1,2. The norm in (1 3) is defined by /I 6,\\ = (ij,, it,), where 

Integrating the first term in (19) by parts and using (17), we can write (19) in the form 

3. Procedure for computing the growth 
Formally, the solution to (8) is 

The growth function is then given by 

In this section we show how to approximate the norm in (22). 

eigenvalues arranged in order of decreasing imaginary part and let 
We begin by first rewriting the solution (9). Let {Aj} denote the 0-S and Sq 

denote the vector eigenfunctions associated with A?. The set {g j )  includes both the 0-S 
and Sq modes. As is well known, the eigenvalues satisfy Im hi --f - co as j +  co. 
Rewriting (12), we have 

m m 

fi(,v,t> = C ~ ~ ( 0 )  exp ( - i A j  t> gj(v> = Z ~ ~ ( t )  q j (y ) .  (24) 
j=1 j=1  

It is clear that if Imhj < 0 and the coefficients {K?(O)} are of 'moderate' magnitude, then 
the terms for large j will be negligible for t > 0. Hence, for sufficiently large K, we have 

K 

fib, 0 = Q,(Y, 0 = Z K j ( 0  qj(y) .  
j=1  

We let W = W, denote the space spanned by the first K eigenfunctions. 
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For each t > 0 there is an initial perturbation 8( y ,  0), normalized so that 

such that the energy of the perturbation at time t is G(a,P, R, t) .  The approximation 
(25) suggests that the growth function can be estimated by considering initial 
conditions in the finite dimensional space W. We therefore define 

We will demonstrate below by an example that GK(t)  !z G(t) if K is sufficiently large. 
First, we show how to compute G,. Let ~ ( t )  = ( ~ ~ ( t ) ,  ~ ~ ( t ) ,  . . . , ~ , ( t ) ) ~  denote the vector 
of the expansion coefficients. By (24), we have ~ , ( t )  = exp (-in, t )  ~ ~ ( 0 ) .  Writing this in 
vector form, we have 

(27) 

where A ,  is the matrix of dimension K with the first Keigenvalues {hi} on the diagonal. 
The matrix exponential exp (-in, t )  has the terms exp (- ih, t )  on the diagonal. We can 
compute the energy of the perturbation 8, by substituting (25) into (13). We obtain 
( I f i , 1 1 2  = . * ( t ) A ~ ( t ) ,  where A is the matrix defined in terms of the inner product (19): 

~ ( t )  = exp ( -iA, t )  K(O) ,  

Aj, = ( q j ,  4). (28) 

The matrix A is Hermitian and can be decomposed in the form A = F*F, where F*  
is the Hermitian conjugate of F. It follows that 

IIfiK(t)112 = K*(t)F*FK(t) = IIFK(l)ll;, (29) 

where the subscript 2 denotes the 2-norm (Euclidian norm). The procedure for 
determining G,(t) now follows that outlined in RSH. We have 

The crucial feature of this last formula is that the 2-norm of any matrix can be 
determined using the singular value decomposition (SVD), which can be computed 
using standard subroutines available in most software libraries. The SVD yields both 
G,(t) and the coefficients (~(0)) of the initial condition that achieve this supremum. 
Hence, to compute the growth function GK(t)  we only need the eigenvalues (hi} and the 
vector eigenfunctions {g,}. The formula (30) is similar to that employed by Butler & 
Farrell ( 1  992). 

We use a spectral discretization of 2 to compute its eigenvalues and eigenfunctions 
numerically (Herbert 1977; RSH). This procedure converts 2' into a matrix L of 
dimension x 2N, where N is the degree of the polynomial approximation or the 
number of modes. (For two-dimensional calculations the dimension of the matrix is 
!z N . )  The amount of work required to compute the eigenvalues and eigenfunctions is 
O ( N 3 )  arithmetic operations. In the case of Poiseuille flow we exploit the symmetry 
properties and separately consider the even part of 2, corresponding to even velocity 
and odd vorticity, and the odd part, corresponding to odd velocity and even vorticity. 
Because we restrict attention to the K least stable modes instead of aII 2N modes, only 
O(K3)  (instead of O(N3) )  operations are required for the computation in (30). This and 
the use of spectral methods are the differences between our procedure and that 
described in Farrell (1988) and Butler & Farrell (1992). These changes can lead to a 
substantial reduction in the number of arithmetic operations required to compute the 
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FIGURE 2. Plot of growth function GJa, 0, R, t )  for a = 1 ,  R = 3000 and K = 30. 

growth for two reasons. First, spectral methods can yield accurate approximations of 
the eigenfunctions and eigenvalues with a smaller N than that required for finite- 
difference methods. Secondly, K is often much less than 2N. A reduction in the work 
by a factor of 5 or more is typical. 

The following example illustrates this procedure. We examine two-dimensional 
Poiseuille flow with a = 1 and R = 3000 and consider the even part of the 0-S 
operator only. In this case 9 = ZOs. The ordered eigenvalues of YOs are shown in figure 

We start with a computation with N = 64 and K = 30. Figure 2 plots the growth 
function G,(a, 0, R, t ) .  There is significant energy growth (GT" = 20.37) even though 
all the eigenvalues lie in the lower half-plane. After the initial transient, the behaviour 

1. A s j +  co, we have Imhj+-co and Rehj w 8. 2 
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FIGURE 4. Magnitude of the expansion coefficients K,(O) for the initial velocity perturbation which 

achieves the maximum growth for a = 1 and R = 3000. 

of the growth function is governed by the eigenvalues near the real axis. Figure 3 shows 
that G F  is essentially independent of K if K is sufficiently large. Also, we find that 
Gmax changes by less than 1 YO if N is changed to 80 or 96. 

In general, to get a good approximation to the growth, K must be sufficiently large 
so that the modes at the intersection of the three eigenvalue branches are taken into 
account. The reason is that the associated eigenfunctions are nearly linearly dependent, 
which implies that the expansion coefficients {~,(0)} of an arbitrary perturbation with 
unit energy can be large. This is shown in figure 4, where we plot the magnitudes of the 
expansion coefficients of the normalized initial velocity perturbation which achieves 

8 FLM 2 5 2  



218 S. C. Reddy and D. S.  Henningson 

the maximum growth G""". The largest coefficients correspond to the eigenvalues at 
the intersection of the branches. The contribution from the modes below the 
intersection decreases rapidly as j increases. Although it is not reflected in the 
magnitude of the coefficients, the contribution of the least stable modes is important 
as well. For example, the maximum growth for an initial condition in the space 
spanned by {&I for j = 2,3,. . . ,30 is only x 6. 

For a < 1 we find that a good approximation to GmaX can be obtained if all the 
modes with imaginary part greater than x -2 are included in the growth calculation. 
For a = 0(1), it is sufficient to include the modes with imaginary part greater than 
x -a. We have checked that a sufficient number of modes have been retained for the 
computations presented in this paper so we will drop the subscript K.  Our results for 
Poiseuille and Couette flow agree with the results listed in Butler & Farrell (1992). The 
principal limitation of the method is that the results may not be accurate when a R  is 
large because it is difficult to compute the eigenvalues and eigenfunctions. We will 
discuss this in more detail in the next section. 

Our numerical computations were performed in double precision on a Sparc 2 
workstation using the interactive linear algebra package Matlab. 

4. Pseudospectra, the numerical range, and applications to energy growth 
An alternative to eigenvalues for analysing the behaviour of non-normal operators 

is to consider their pseudospectra and numerical range. Let A be a matrix with 
eigenvalues A(A) and resolvent set p(A)  = C\A(A). The resolvent ( d - A ) - '  is defined 
if z ~ p ( A ) .  Let [ (  * 11 denote the norm induced by the inner product (. , *). Here is the 
definition of pseudospectra (Trefethen 1992) : 

DEFINITION. A number Z E  C lies in the e-pseudospectrum of A ,  which we denote by 
Ac(A),  if either of the following equivalent conditions is satisjied: 

(i) z is an eigenvalue of A+ E for some perturbation matrix E with ((El( < E ;  

(ii) z ~ p ( A )  and ~ ~ ( z Z - A ) - ~ ~ ~  3 e-' or Z E A ( A ) .  

The epseudospectra are nested sets and A,(A)  is the spectrum. The definition 
extends to differential operators. Let X be a Hilbert space and let d: X + X  be a 
closed operator with domain B(d) E X .  (See Kato (1976) for the definition of a closed 
operator. The definition of the space X in 52 ensures that 9 is closed.) We take (ii) 
to be the fundamental definition of the pseudospectrum for operators. Conditions (i) 
and (ii) are not equivalent for operators but can be made equivalent by taking the 
closure of (ii). 

Here is the definition of the numerical range (Kato 1976): 

DEFINITION. Let A be a linear operator. The numerical range of A ,  which we denote by 
%(A), is deJined by 

R ( A )  = { z :  z = (Au, u), where U E ~ ( A ) ,  (lull = 1). (31) 
The numerical range is a convex set. For a general class of operators, which includes 
9, the closure of the numerical range contains the spectrum. (A technical assumption, 
which is trivially satisfied by g',,, Xq and 9, is required for this last result (Kato 1976; 
RSH).) 

In RSH the pseudospectra and the numerical range of the Orr-Sommerfeld operator 
ZOs for two-dimensional Poiseuille flow were studied by approximating the operator by 
a matrix. It was argued that the approximation is good if the number of modes N is 
sufficient. Figure 5, taken from RSH, shows the boundaries of the numerical range and 
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FIGURE 5. Pseudospectra of the even part of the &S operator y, for two-dimensional Poiseuille flow 
with a = 1, p = 0 and R = 3000. 0,  eigenvalues; -- -, boundary of the numerical range; --, from 
outer to inner are boundaries of the epseudospectra for 6 = IO-l, . . , lo-*. 

the e-pseudospectra for the even part of the 0-S operator with 01 = 1 and R = 3000. 
(Recall that due to symmetry, even and odd perturbations to Poiseuille flow evolve 
independently. The even/odd part of the 0-S operator governs the evolution of 
even/odd perturbations.) For each e, the e-pseudospectrum is the region bounded by 
the contour corresponding to s. As shown in the plot, the sets Ac(Zos) are nested and 
A , , ( g S )  is the spectrum. The dashed line is the boundary of the numerical range. 

The main point underlying the study of the s-pseudospectra is that, roughly 
speaking, operator behaviour depends not solely on the eigenvalues, the points where 
II(zZ- A)-lI) = co, but on regions where the resolvent norm ~ ~ ( Z Z - - A ) - ~ ~ ~  is ‘large’. For 
a normal operator the resolvent satisfies (Kato 1976) 

where dist {z,  A(A)}  is the distance of z to the spectrum. This formula implies that the 
e-pseudospectrum is simply the union of the closed disks of radius E centred at the 
eigenvalues. Hence, the c-pseudospectra are not significantly larger than the spectrum 
if e is small. In many applications, the behaviour of a normal operator is governed by 
its spectrum. For a non-normal operator, the e-pseudospectrum can be much larger 
than the spectrum, even if e + 1. In such cases it may be more appropriate to consider 
the pseudospectra instead of the spectrum alone to analyse operator behaviour. 

Figure 5 shows that Zos is non-normal. Consider the e-pseudospectrum for E = 
whose boundary is the inner contour. This set is much larger than the union of the disks 
of radius centred at the eigenvalues, particularly near the intersection of the 
eigenvalue branches. These eigenvalues are highly sensitive to perturbations ; this 
property follows from the first characterization of the e-pseudospectrum given in the 
definition above. This feature of the eigenvalues appears in numerical computations ; 
the eigenvalues at the intersection of the branches cannot be computed to as high a 
precision as the least stable eigenvalues. Related to the sensitivity is the fact that the 
associated eigenfunctions are nearly linearly dependent, which implies that eigen- 

8 - 2  
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0.4 

FIGURE 6. Same as figure 5 for the 0-S operator qs for two-dimensional Couette flow with a = 1, 
p = 0 and R = 1000; -, boundaries of the s-pseudospectra for e = lo-', lo-', . . . , 

function expansions can involve very large coefficients. These large coefficients can 
lead to rounding errors as well. In RSH it was shown that both the sensitivity of the 
eigenvalues and the near linear dependence become dramatically more pronounced as 
the Reynolds number increases for any fixed a. 

Figure 6 plots the boundaries of the numerical range and the epseudospectra for 
two-dimensional Couette flow with a = 1 and R = 1000. The eigenvalues at the 
intersection of the branches are highly sensitive to perturbations and the sensitivity 
again increases dramatically with the Reynolds number. 

The pseudospectra and the numerical range of the Sq operator for Couette flow were 
investigated in RSH. The spectrum also consists of three branches, and it and the 
epseudospectra are symmetric about the imaginary axis. Using analytical methods, it 
was shown that the numerical range lies in the lower half-plane for all R and that the 
sensitivity of the eigenvalues at the intersection of the branches increases exponentially 
as R + m .  

The pseudospectra of the full three-dimensional operator 9 for both Poiseuille and 
Couette flow are qualitatively similar to those of the corresponding two-dimensional 
operator if OL x O(1). On the other hand, the pseudospectra are different for CL = 0. 
Figure 7 shows the pseudospectra for the part of 9 governing the evolution of the even 
velocity and the odd normal vorticity for Poiseuille flow with a = 0, p = 2 and 
R = 3000. The pseudospectra of 2 for three-dimensional Couete flow with a = 0 is 
qualitatively similar. 

Plots of the pseudospectra of the full Navier-Stokes operator, without fixing a and 
p, are presented in Trefethen et al. (1992). 

One of the main applications of pseudospectra and the numerical range is to the 
analysis of energy growth for initial-value problems like (8) (Pazy 1983). Roughly 
speaking, energy growth depends on how far the pseudospectra and the numerical 
range of 9 extend into the upper half-plane. Let us define the pseudospectral abscissa 
to be 

yc = sup Imz, (33) 
z e n , ( Y )  
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I 

FIGURE 7. Same as figure 5 for the operator 9 for three-dimensional Poiseuille flow with 
a = 0, p = 2 and R = 3000; --, boundaries of the e-pseudospectra for 6 = lo-’, lo-*. 

and the numerical abscissa to be 

w = sup Imz. 
t E . F ( Y )  

22 1 

(34) 

These quantities are simply the maximum imaginary part of any point in the e- 
pseudospectrum and numerical range, respectively. The following is the main result on 
energy growth. 

THEOREM (HILLE-YOSIDA). We have Gmax(n,,8,R) = 1 if and only if any of the 

(i) yt < e j o r  all e > 0 ;  
(ii) l l ( ~ Z - 9 ) ~ ~ 1 1  < l/(Imz) for  all z satisfying Imz > 0 ;  
(iii) w 6 0. 

Condition (ii) is the standard condition for no energy growth (Pazy 1983), and 
condition (i) is a restatement of (ii). Condition (iii) states that there is no energy growth 
if and only if the numerical range of 9 lies in the lower half-plane. If 9 were normal, 
the standard condition requiring the eigenvalues A ( 9 )  to lie in the lower half-plane 
would be necessary and sufficient for no energy growth by the estimate (32) and the 
condition (ii). 

Condition (iii) is related to energy methods (Joseph 1976), which derive condi- 
tions for no energy growth by considering the evolution equation for the energy 
l1811z = (6,8) and can be applied to linear and nonlinear problems. Using (8) and 
general properties of the inner product, we have 

following equivalent conditions is satisjied: 

Thus, the rate of change of the energy is always non-positive if and only if the 
numerical range of 2 lies in the lower half-plane. 
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Condition (iii) can be restated in terms of the anti-symmetric part of dp, defined by 
k (dp-  2*), where dp* is the adjoint of dp. There is no energy growth if and only if the 
eigenvalues of the anti-symmetric part lie in the lower half-plane ; see also Davis (1969) 
and Galdi & Straughan (1985). 

Roughly speaking, the maximum growth Gmax(a, p, R) depends on how far the 
pseudospectra extend into the upper half-plane, but the connection is not as precise as 
in the Hille-Yosida theorem. For each E > 0, let us define re = ye,/€ and r“ =  SUP^,^ r , .  
We then have (Pazy 1983) 

Gmax(a,P, R) > P. (36) 

An upper bound can be determined using a resolvent integral (Kato 1976). 
We can use the Hille-Yosida theorem and (36) to investigate growth in the three 

examples. In each example, the numerical range extends into the upper half-plane, 
which implies that there is transient growth. Computing r“, we find that Gmax is at least 
x 6.3 and z 2.3 for the two-dimensional Poiseuille and Couette problems, respectively. 
These bounds are approximately one-third of the true value of Gmax. The bound 
predicted by (36) for the three-dimensional example is z 850, which is approximately 
half the actual value of the growth (Trefethen et al. 1992). 

5. Conditions for no energy growth 

theorem. Suppose that ir = [fi QIT E H. To compute (26, ir) we note that 
We determine conditions for no energy growth by applying the Hille-Yosida 

This result and the formula for the inner product (20) imply 

A straightforward calculation shows that 

l 1  
Im (Sir, 8) = -- ( ( i j ” I 2  + 2k21fi’I2 + k416I2 + ! + ’ I 2  + k21Q12) dy 

R I-, 
+ Im s:, U’(aB*O’ -/36*$) dy, (38) 

where ’ denotes the differentiation. 
The first term in (38) is strictly negative for all Reynolds numbers and corresponds 

to dissipation in the energy of the perturbation. The second term may be positive or 
negative and is related to the exchange of energy with the laminar flow U. 

There is no energy growth if Im (gir, 8) < 0 for all vector functions i r ~  g ( 2 ) .  The 
second term (38) is bounded in magnitude. Hence, if the Reynolds number is 
sufficiently small, then the numerical range will lie in the lower half-plane. Now, if 
R,(a,p) is the largest value of R such that the numerical range lies in the lower half- 
plane, then 

Im (aU‘ij*ij‘-pU‘O*Q)dy s (39) s = sup 
1 

Rl(a3 p) 
fi€g(Y) ( l i j ” l 2  + 2k215’12 + k41fi(2 + lQ’12 + k2lfl’Z) dy ’ 
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This optimization problem can be solved using calculus of variations. The Euler 
equation corresponding to (39) is the coupled eigenvalue problem 

fi(iv) -2k2fi”+k4fi+ih(aU’B’+~a:U”O-~/3u’71^) = 0, (40) 

(41) 

(42) 

- f ”  + k2f - ih$pU’fi = 0, 

O( * 1) = 0’( f 1) = r^l( f 1) = 0. 

The function R,(a,/?) is the smallest positive eigenvalue h of (40)-(42). Now, if /3 = 0, 
then (41) is not required, and R,(a,O) is the smallest positive eigenvalue of 

P) - 2k20” + k40 + iah( U’O’ + +U”fi) = 0 O( f 1) = 5’( 1) = 0. (43) 

This last eigenvalue problem was first derived by Orr (1907) using energy methods and 
was subsequently derived by Synge (1938) using a procedure similar to that above. We 
compute &(a, p) using a spectral collocation method (Canuto et al. 1988). 

The expression (38) gives the rate of change of energy of the perturbation 6 for the 
wavenumber (a,/?). The rate of change of the total perturbation energy E of a 
perturbation u = (u, v, w )  of arbitrary amplitude is given by the Reynolds-Orr equation 
(Drazin & Reid 1981). We have 

s - dQ = - ~ s ( l V u l z + ~ V v ~ z + ~ V w ~ 2 ) d x -  U’(y)uvdx, 
dt R (44) 

where the integration is over the volume between the plates at y = & 1 and U = U(y) 
is again the flow in the x-direction. The right-hand side of (44) is analogous to (38). 

Equation (44) is the starting point for energy methods. The Reynolds number R,, 
below which there is no energy growth, is given by 

- 1 U’( y) uv dx 
= sup 

1 

Rg 

- 

” /(lVuJ” + JVv)2 + )VwI2) dx’ 
(45) 

where u is an admissible perturbation satisfying the continuity equation and the no-slip 
boundary conditions on the plates. 

Now, (38) can be derived from (44). Let u = Re(zi(y)eiazfifl2) and let us similarly 
define v, w and 7. As in Drazin & Reid (1981), where (43) is derived from (44), we 
proceed by integrating and averaging over one period in the x- and z-directions. For 
the energy exchange term we obtain 

- * dy fi‘“ dx r ’ d z  U‘uv = aO* 0‘ -PO*? 
47L2 -1 

Modulo the factor 2k2 in the denominator, which is constant for any fixed wavenumber 
combination, the right-hand side of (46) is the same as the second term in (38). Using 
the same procedure, it can be shown that the first term in (44) is the same as the 
dissipation term in (38), except for a factor of 2k2. 

The above analysis shows that (38), which is based on the linear operator 9 and the 
numerical range, is equivalent to (44), which gives the rate of change of the total energy 
for a perturbation of arbitrary amplitude. The equality occurs because the nonlinear 
term u.Vu in the Navier-Stokes equation drops out of (44). The standard procedure 
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for determining R, is to first derive the Euler equations for (45) and then Fourier 
transform u, v and w (Joseph 1976). It can be shown that the resulting eigenvalue 
problem is equivalent to (40)-(42). A similar result was proved by Davis (1969) for a 
convection problem with surface tension and by Galdi & Straughan (1985) for a 
general class of problems. 

The above arguments imply 
R, = inf &(a, /3). (47) 

3. B 

This equality has two interesting implications. First, for there to be a potential for 
energy growth for the full nonlinear problem, there must be a potential for energy 
growth for the linear problem. Hence, a linear growth mechanism is required for 
transition. Secondly, suppose that 9 were normal for all a, /3, R. In such a case, 
R, = inf,,pRl(tL,P) by (32) and the Hille-Yosida theorem. Coupled with (47), this 
would imply that there could be no transition at subcritical Reynolds numbers. This 
implies that subcritical transition occurs for Poiseuille and Couette flows because 9 is 
non-normal. 

6. Growth for two-dimensional Poiseuille and Couette flow 
6.1. Growth contours 

We begin by examining the growth function for two-dimensional flows, where /3 = 0. 
There are three types of behaviour to consider for Poiseuille flow. If the Reynolds 
number is less than R,(a,O), the limit predicted by the numerical range, then 
Gmax(a, 0, R) = 1. On the other hand, if gs has an eigenvalue in the upper half-plane, 
then the flow is linearly unstable and Gmax(a, 0, R)  = co. Finally, if R > R, and the flow 
is linearly stable, then there is transient growth. Figure 8, which originally appeared in 
RSH and is included here for completeness, indicates these three regions in the (R,  a)- 
plane. We see that there can be transient growth as large as x 51 at subcritical 
Reynolds numbers. If gS were normal for all a and R, then G""" = 1 and G""" = co 
would be the only possibilities. 

Orr (1907) showed that min, R,(a, 0) x 87.7. This minimum occurs for a x 2.05. 
In addition, it has beer: shown that R,(a,O) >, c l /a  as a+O and R,(a,O) >, c2a2 as 
ct+co (Synge 1938; Joseph 1969). It  follows that for any fixed Reynolds number 
R, Gmax(a,O, R) > 1 if and only if a,(R) < 01 < ol,(R). 

It is instructive to compare the growth functions G(a, 0, R, t )  for stable and unstable 
flows. Figure 9 plots the growth function for 01 = 1 and R = 5000 and a = 1 and 
R = 8000. For small values oft, the growth function is qualitatively the same in the two 
cases. In this transient phase, the behaviour of the growth function does not depend 
on the stability or instability of the flow; the stability of the flow is only revealed as 
t --f co. The least stable eigenvalues govern the behaviour of the growth function only for 
large time. The transient growth for stable flows is a short-time phenomenon compared 
to the infinite growth for unstable flows. The third curve in figure 9 shows the energy 
of the perturbation velocity 6 in the case where the initial velocity is the normalized 
eigenfunction associated with the unstable eigenvalue for a = 1 and R = 8000. The 
unstable mode does not achieve the greatest possible energy growth ; the initial 
condition which achieves the maximum growth is a linear combination of several 
eigenfunctions (Farrell 1988). 

For Couette flow, there are only two types of behaviour to consider, since the flow 
is linearly stable for all R.  Figure 10 shows the level curves of Gmax(a, 0, R). The dashed 
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FIGURE 8. Level curves of Gmax(a, 0, R) for Poiseuille flow. - - -, Gmax(a, 0, R) = 1 ; ---, from .-ft to 
right, Gmax(a, 0, R) = 10,20,30, . . . ,70. In the shaded region the flow is linearly unstable. 

60 

I \  Unstable , 

Stable 

Modal 

0 50 100 150 
t 

FIGURE 9. Plot of G(a, 0, R, t )  for stable and unstable Poiseuille flow. The stable case corresponds to 
a = 1 and R = 5000, and the unstable to a = 1 and R = 8000. The curve labelled ‘Modal’ is a plot 
of the perturbation energy in the case where the initial velocity is the normalized eigenfunction 
corresponding to the unstable eigenvalue for a = 1 and R = 8000. 

line is R,(a,O). Orr (1907) showed that min,R,(a,O) w 44.3; this occurs for a z 1.88. 
The bounds on R,(u, 0) for the limits a+O and a+ co given above for Poiseuille flow 
also hold (with different constants) for Couette flow. 

6.2.  Growth at degeneracies in the (R,u)-plane 
Degeneracies of the 0-S eigenvalues have received much attention in previous work as 
a possible mechanism for energy growth. However, degeneracies are neither necessary 
nor sufficient for growth. It is of fundamental interest to determine the smoothness of 
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I I 
0 200 400 600 800 1000 

R 
FIGURE 10. Same as figure 8 for Couette flow. The solid curves correspond to 

2,4,6 ,..., 12. G""" = 

R d  ad Gmax(aa, 0, R,) 
8.5309600 x lo1 2.539077 15 x loo 1 .oo 
2.790 035 4 x 10' 1.891 17874x loo 2.80 
4.1066100 x lo2 8.858 19600 x lo-' 2.35 
1.7858440 x lo3 5.063 50000 x lo-' 5.15 

TABLE 1. Maximum growth at points where the even part of the G S  operator for Poiseuille flow has 
a degenerate eigenvalue. The maximum growth is computed to the nearest 0.05. These results were 
obtained by discretizing y, using N = 64 even modes. 

the maximum growth at the degeneracy points in the (R,a)-plane. To compute the 
growth the expansion (25) must be modified to include a generalized eigenfunction 
term; the analysis can be found in many books on ordinary differential equations. If 
A,  is a degenerate eigenvalue, then the expansion for the velocity is 

O(y, t )  = K, 5, exp ( - ih, t )  + a K n [ B ,  t exp (-ih, t )  
K 

+ aB, exp (- ih, t)] + 2 K~ fij exp (- ihj t). (48) 

The generalized eigenfunction aB, is determined from the equation (Yo, - A,) au", = iu",. 
Using (48), we can derive a new formula, analogous to (30), for the growth function 
G(a, ,8, R, t). The principal modification is that the matrix A ,  now has a non-zero off- 
diagonal term. 

It is conjectured that the 0-S operator for Poiseuille flow has degeneracies at an 
infinite number of discrete points in the (R, a)-plane (Shantini 1989). We examine the 
maximum growth at the four points in table 1. The criterion for a degeneracy that we 
used was the existence of a pair of eigenvalues lying within a distance 2 x of each 
other. Because of differences in the numerical procedure, the degeneracies listed in the 
table differ in the last digits from those listed in Shantini (1989). A check of the 
eigenfunctions indicates that the points do yield degenerate eigenvalues. 

j + n  
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R 
FIGURE 11. Contours of G"" for Poiseuille flow in the neighbourhood of the degeneracy at 

R z 279 and a x 1.89 (the dot), where the maximum growth is e. 2.80. 

R d  ad Gmax(ad, 0, Rd> 
80.56522 0.5 1 .oo 

114.425 96 0.5 1.05 
119.62036 0.5 1.10 
145.79788 0.5 1.30 

TABLE 2. Maximum growth at points where the 0-S operator for Couette flow has a degenerate 
eigenvalue. The maximum growth is computed to the nearest 0.05. These results were obtained by 
discretizing y, using N = 64 modes. 

There is no growth at the first point and this is consistent with figure 8 since the point 
lies to the left of the G"'" = 1 contour. There is energy growth at the other 
degeneracies. Figure 11 zooms in on figure 8 in the neighbourhood of the degeneracy 
near R w 279 and a w 1.89. As a and R approach the degeneracy (&,ad), the 
maximum growth Gmax(a, 0, R) approaches Gmax(ad, 0, R J ;  the deviation is at most 
k0.05. Similar results are obtained for the other degeneracies. 

The 0-S operator for Couette flow has degeneracies at points in the (R,  a)-plane as 
well. In table 2 we list four degeneracies occurring for a = 0.5, which we pinpointed 
with the aid of figures in Gustavsson & Hultgren (1980). Our numerical calculations 
suggest that Gmsx(a, 0, R)  is a smooth function. 

7. Growth for three-dimensional Poiseuille and Couette flows 
7.1. The boundary of the region where Gm""(a,p,R) > 1 

As discussed in $5,  the boundary of the region where Gmax(a, p, R)  > 1 is defined by the 
function R,(ol,p), the smallest Reynolds number such that there is energy growth for 
the wavenumber (a, p). 

Figure 12 shows the level curves of R,(a, p) for Couette flow. For each R, the contour 
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a a 

FIGURE 13. (a, 6) Same as figure 12 for Poiseuille flow. The dot at a s 1 and /3 = 0 in (6) roughly 
marks the region where Poiseuille flow is linearly unstable for R = 6000. 

R,  = R is the boundary of the region in the (a, p)-plane where Gmax(a, p, R) > 1. The 
minimum Reynolds number for energy growth is R, = min R,(a, p) FZ 20.66, and this 
value is achieved at p x 1.56 and a = 0 (Joseph 1966). Before this last result was 
obtained, it was thought that Orr’s result of % 44.3, which is achieved at p = 0 and 
a x 1.88, gave the minimum Reynolds number for growth. For each R, >, 44.3 the 
region where there is energy growth has an annulus-like shape. Figure 12(6) shows the 
outer boundary of the annulus for various values of R,. Now, R,(O, 0) = co because the 
operator 2 for a = p = 0 and arbitrary R is normal and has a spectrum lying in the 
lower half-plane. We show below that R,(a, p) --f co as a, p+ 0. 

Figure 13 shows the level curves of R,(a,p) for Poiseuille flow. The minimum 
Reynolds number in this case is R, z 49.6 (Busse 1969; Joseph & Carmi 1969). This 
is achieved at tc = 0 and p FZ 2.05. For each R > R, x 5772 there is a small region in 
the (a,p)-plane for each R > R, x 5772, where the flow is linearly unstable. For 
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R = 6000, this region is approximated by the dot at 01 = 1 and P = 0 in figure 13(b). 
The region where there is energy growth is much larger than the region of linear 
instability. 

We can determine analytic bounds for R,(a, P) starting with the expression 

1 

+Irn/-] U’(ad*0’dy-/30*i)dy, (49) 

obtained in 55. We proceed as in (Synge 1938; Joseph 1969). To simplify the notation 

Dividing (49) by 11 811 = I :  + k21i + J :  and using the Cauchy-Schwartz inequality, we 
obtain 

Im (98, 8) gal, I,, +qPI,J,- 1; +2k21t +k41:+ J ;  + k2J: 
’ R(It + k21i + .I:) w = sup Imh = sup < sup 

h s S ( Y )  ij 11fi112 I ;  + k21:+ J ;  

(51) 

We simplify (51) using the following results, which can be obtained using calculus of 

(52) 

where 4 = suP-l<y~ll~’(Y)I’  

variations : 

It follows that 
I:+l 2 $t211j” ( j  = 0, l ) ;  J ;  2 

I ;  + 2k21f + k41i + J ;  + k2Ji  2 (in2 + k2)(Z; + k21: + J:),  
I :  + k21i 2 2a11 I,,, 
k21; + J:  2 2/34 4. 

Using these last formulae, we obtain 

7c2 + 4k2 
w < g-- 

4R ’ 

Hence, there is no energy growth (w < 0) if 

n2 + 4k2 
Rd-.  

49 

(53) 

(54) 

The bound (54) is appropriate for large k ,  but it is not sharp as k +  03. To obtain 
a sharp bound for small k we simplify the first term of (51) using the inequality 
I, < 2IJn. It follows that there is no growth if 

The inequalities (54) and ( 5 5 )  imply that 

This result shows that the region for growth in the (a,P)-plane lies inside the annulus 
whose outer and inner boundaries have radii O(R1) and O(R-l) as R + co, respectively. 
For p = 0, (56) has the same asymptotic form in the limits a+O and a+ 00 as the 
results of Synge and Joseph. 
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FIGURE 14. (a, b) Contours of Gmax and tmax for Poiseuille flow with R = 1000. Plot (a) shows the level 
curves of G""". ---, Gmax = 1. -, from outer to inner, G""" = 2,5,10,20,60,100,140. Plot (b)  

0. -, from outer to inner correspond to tmax = 2,5,10,20, shows the contours of tma". ---, 
60. 

tmax = 

P 

FIGURE 15. Contours 

Y /  / I 

0 0.5 1.0 1.5 2.0 
01 

of Gmax for Poiseuille flow with R = 1000. The curves 
correspond to G""" = 10,20,40, . . . , 140, 160, 180. 

from outer to inner 

7.2. Growth contours for  Poiseuille @ow 
The results of the last section give the boundaries of the region in the (a,P)-plane 
where there is growth. We now examine various properties of the maximum growth 
Gmax(a, p, R) and tmax(a, P, R), where Pax is the time at which the maximum growth is 
achieved for Poiseuille flow. 

Figure 14 shows the level curves of G""" for R = 1000 and figure 15 zooms in on the 
region where G""" is largest. Let us define 

S(R)  = SUP Gmax(a, /3, R). 
a, P 

(57) 
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FIGURE 16. (a, b) Level curves of G(a,/3, R, t ) ,  where t = 25 in (a) and t = 75 in (b). The contours from 
outer to inner correspond to G(a, /I, R, t )  = 5,10,20,40,60, . . . ,120. 

We find that S(lOO0) = 196 and that this growth is achieved for a = 0 and /? x 2.05. 
In addition, we find that tmax(O, 2.05,lOOO) x 76. Note that this wavenumber 
combination is close to that at which R,(ol,/?) is minimized. Figure 14(b) shows the 
level curves of tmax. The growth function G(a, /?, R, t )  is maximized at earlier times for 
wavenumber combinations away from the /?-axis. The geometry of the contours of 
Gmax and tmax is qualitatively similar for different Reynolds numbers and for Couette 
flow as well. 

It is also of interest to consider the behaviour of G(a,/?, R, t )  for fixed t .  Figure 16 
plots the level curves of the growth function for t = 25 and t = 75, where the latter time 
is that at which the global maximum growth of 196 is attained. For t = 25 the largest 
value of G(a, /?, R, t )  occurs away from the /?-axis, and the region of large growth is 
broad. For t = 75 the largest value of G(a,/?, R, t )  occurs close to the /?-axis and the 
region of large growth is narrower. 

Both Gmax(a, /?, R) and tmax(a, /?, R) increase with R for each fixed wavenumber 
combination. We conjecture that Gmax(a, /?, R) + 00 as R + 00. This is consistent with 
the results of Landahl (1980), who showed that the energy of a three-dimensional 
perturbation to inviscid parallel shear flows may experience unbounded growth. In the 
next section we will show that S(R) = O(R2) for large subcritical Reynolds numbers R.  

We find that Gmax(a, /?, A) is not affected by a direct resonance between the 0-S and 
Sq eigenvalues. For R = 1000, there are direct resonances at a x 0.11609 and 
/? = 1.4731 and a x 0.223 19 and /? = 2.3326 (Gustavsson 1986). We can determine the 
growth at these points by including an algebraic term in the eigenfunction expansion, 
as in the case of degenerate eigenvalues. We find that maximum growth at these points 
is x 136.5 and x 170, respectively and that Gmax(a,/?, R) changes smoothly as a and 
P are varied. Previously, Butler & Farrell (1992) found that Gmax is smooth at direct 
resonances in Couette flow. 

It is instructive to further compare the growth for a = 0 and a $; 0. Gustavsson 
(1991) investigates the forcing of the normal vorticity by the least stable 0-S mode. In 
this case the perturbation it has a simplified eigenfunction expansion of the form 
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He chooses the coefficients A ,  and {Bj}  so that the initial vorticity is zero and 
IJ i j ) I2  = 1. For a = 0, /3 = 1.98 and R = 1000, it is found that there is growth by a 
factor of M 178 for this choice of perturbation. This growth is only 9% lower than 
Gmax(O, 1.98,lOOO) x 196. 

For a =I= 0, a perturbation of the form (58) does not yield a good estimate for the 
maximum growth. For example, for a = 1, /3 = 1.98, and R = 1000, we have 
G""" z 80. On the other hand, the maximum growth for a perturbation of the form 
(58) is only x 7. 

The difference between the a = 0 and a = 1 case is revealed in figure 17, which plots 
the expansion coefficients for the initial conditions that achieve the maximum energy 
growths 196 and 80. For a = 1, the largest coefficients correspond to the 0-S and Sq 
modes at the intersection of the eigenvalue branches as in the example in 0 3. Neglecting 
0-S modes for j = 2,3,4,. . . , yields a poor estimate of the growth. For a = 0, the 
largest coefficients in magnitude correspond to the least stable 0-S and Sq modes. 
Hence, the higher 0-S modes can be neglected. 

In the previous work, Butler & Farrell(l992) investigated growth for Poiseuille and 
Couette flows. For Poiseuille flow at R = 5000, they find that the maximum growth 
occurs at 01 = 0 and /3 M 2.04. For Couette flow, they show that Gmax(a,/3, R )  is 
maximized for wavenumber combinations slightly off the /3-axis, near /3 = 1.6. They 
note that the potential for growth for small t is greatest away from the /3-axis. 

7.3. A scaling for  Gmax(a, /3, R) 
To get a complete understanding of the behaviour of Gmax(a,/3, R)  it is necessary to 
compute the growth throughout the three-dimensional (a, /3, R) parameter space. This 
approach is computationally expensive. We can get an understanding of the behaviour 
of Gmax(a,/3, R)  for small aR by employing a scaling used by Gustavsson (1991). 

Let us define f = t /R ,  T(y ,  0 = $(y ,  t/R)/@R, C(y, 0 = 6(y, t /R).  Then we have 
!( y ,  t /R )  = [C( y ,  9 pRT((y, 91'. The evolution equations for B and 7 can be put into a 
vector form similar to (8). The new 0 - S ,  Sq, and coupling operators are 

gs = -(D2-k2)-1[aRD2U-aRU(D2-k2)-i(D2-k2)2], 
$, = aRU+i (D2-k2) ,  

= DU. 

The advantage of the scaling is that the operators gs and gq depend on only two 
parameters : k2 = 01' +p2 and aR. The energy E(Q of the perturbation [a 71' in the new 
variables is given by 

Here, E, and P2R2E7 are the energies in the velocity and normal vorticity, respectively. 
The advantage of the new formulation is not clear at this point because of the 

reappearance of a third parameter, PR, in (62). To motivate the scaling let us consider 
growth for Poiseuille flow with a = 0 and /3 = O( 1). 

We investigate the growth by examining the effects of the operators gs and qq. For 
a = 0, these operators are normal and have spectra lying in the lower half-plane for all 
k. 

The evolution of the velocity is governed solely by gas; we formally have C(y, t )  = 
exp ( -izs i )  C( y ,  0). Since gs is normal and its spectrum lies in the lower half-plane, 
the Hille-Yosida theorem implies that EJi) 6 EJO) for all f 2 0. 
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Now, if the initial velocity B is zero, then the velocity will remain zero for all time. 
The normal vorticity is governed by gq in this case: ~ ( y ,  f )  = exp ( -igq f )  ,q((v, 0). 
Since $g is normal and its eigenvalues lie in the lower half-plane, E,(O < E,(O) for all 
fa 0. This last result implies that the total energy satisfies E(f) < E(0) if the initial 
velocity is zero. 

These last arguments show that to achieve a large energy growth the initial 
perturbation [V((y, 0) q(y,  O)]' should be chosen so that most of the initial energy is in 
the velocity : 

Let tmax denote the time at which the energy of the perturbation has increased by a 
factor Gmax(O, p, R). Since E,(f), the energy in the velocity, does not grow, it follows 
that the perturbation that experiences the maximal energy growth satisfies 

EJO) % p2RZE,(0). (53) 

p2R2E,(f) % E,(f) ( f ~  Pax). (64) 

This last inequality and the definition of the growth function imply 

The energies E, and E? depend on B and 7, which in turn only depend on k (since 
a! = 0). Hence, the optimization problem in (66) depends only on the parameter k = p, 
and we have 

(67) 

for some function GI. (It is convenient to introduce the function r?, because it does not 
have a singularity at p = 0.) This scaling relation holds for both Couette and 
Poiseuille flows and becomes more accurate as R increases. 

Gmax(O, p, R) M p2R2H,(p) = R2H1(P), 
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FIGURE 18. (a, b) Contours of kzCmax(a,p, R) / (p2R2) .  For Couette flow (a), the contours from outer 
to inner correspond to 0.4, 0.6, 0.8, 1.0, 1 . 1  ( x  lo-”. ---, R = 500; ---, R = 1000. For Poiseuille 
flow (b), the contours from outer to inncr correspond to 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 ( x  ---, 

aR aR 

R = 1500; -, R = 3000. 

A scaling relation similar to (67) is valid for small aR. To show this we must verify 
that the initial perturbation achieving a maximum possible energy growth satisfies (63) 
and (64). For a + 0, the operators gs and g,  are non-normal, so the arguments 
leading to (63) and (64) must be modified. 

Now, though $, is non-normal, its numerical range lies in the lower half-plane for 
a > 0 (RSH). Hence, by the Hille-Yosida theorem, E,(Q < E,(O) and E(Q < E(0) for 
all t 3 0 if the initial velocity is zero. It follows that the initial perturbation must satisfy 
(63) to achieve the maximum possible energy growth. 

The numerical range of gs need not lie in the lower half-plane. Hence E,(Q may 
grow, and as we have seen in the last section, there can be significant energy growth 
for two-dimensional perturbations. However, this growth is much less than the growth 
for three-dimensional perturbations (z 11 compared to z 196 for R = 1000, for 
example). In general, if Gmax(a, @, R)  is large, then the main contribution is due to the 
energy in the vorticity and (64) must be satisfied. 

These arguments imply that (66) holds. In this case, the optimization problem 
depends on k and aR. Hence, if the three-dimensional growth is ‘large’, we have 

pz R2 
Gmax(a, @, R) x F g 2 ( k ,  aR) 

for some function fl,. The k2 term in the numerator ensures that Z?, is non-singular as 
k -t 0. Again, (68) becomes more accurate as R increases. 

Figure 18 verifies (68) by plotting the level curves of k2Gmax(a,@, R)/(p2R2) for 
Couette and Poiseuille flows in the (aR,k)-plane. Comparing results for the two 
Reynolds numbers, we see that the scaling relation becomes more accurate as aR + 0. 

For Poiseuille flow, S(R) = sup ,  Gmax(a, @, R) is achieved for a point on the @-axis 
for R < R,, as we saw in the previous subsection. Hence, we can use the scaling relation 
(67). It follows that S scales like R2. We find that the maximum of GI is achieved at 
@ z 2.04 and that 

for large subcritical R.  This growth is achieved at t x 0.076R. 

S(R) X 1.96 x 1 0 - 4 ~ 2  (69) 
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For Couette flow, the maximum growth in the (a,p)-plane is achieved near the p- 
axis. The scaling relation (68) and the results in figure 18(a) imply that the largest 
growth in the (a,P)-plane is achieved for k x C, and a R  x C,, where C, and C, are 
constants. If we substitute these constants into (68) and use the fact that p 2  = k2-a , ,  
we find that 

pzR2 - 
-H,(k,  aR)  = R2 

k2 

Hence, the growth scales like R2 as R + co. This result verifies the results in Butler & 
Farrell (1992), where it is shown that 

S(R) z 1.18 x 1 0 - 3 ~ 2  (71) 

and that the maximum growth occurs at t z 0.1 17R. We find that C, x 1.6, C, z 35.  

8. Discussion 
In this paper we have investigated energy growth for small two- and three- 

dimensional perturbations to Couette and Poiseuille flows. 
There is more to the linear operator 9, which governs the evolution of small 

perturbations to channel flows, then its eigenvalues. The reason is that 9 is non- 
normal; it has non-orthogonal eigenfunctions. In such cases it is often more appropriate 
to analyse the numerical range and the e-pseudospectra to understand the operator 
behaviour. A fundamental implication of the non-normality is that there can be 
substantial transient growth in the energy of small perturbations even if the Reynolds 
number is less than the critical value. This growth occurs in the absence of 
nonlinearities. 

Our main focus has been to calculate the growth function G(a, B, R,  t) ,  which gives 
the maximum potential growth for small perturbations for the wavenumber 
combination (a,p), Reynolds number R, and time t, and the maximum growth 
Gmax(a, p, R),  which gives the maximum growth for all time. The maximum growth has 
three types of behaviour. First, if 9 has an eigenvalue in the upper half-plane, the flow 
is linearly unstable, then G""" = co. Secondly, if the numerical range of 9 lies in the 
lower half-plane, then Gmax(a,p, R) = 1, and there is no growth. We show that 
there is a function R, (a ,p )  such that there is no growth if R < R,(a,p) .  Finally, if 
R > R,(a,  p) and the flow is linearly stable, then 1 < Gmax(a, p, R )  < a, and there is 
transient growth. Our numerical procedure for computing transient growth is similar 
to that used by Butler & Farrell (1992). 

We find that there is transient growth if k2 = a2+p2 satisfies k,(R) d k2 d k,(R), 
where k ,  + 0 and k ,  --f 00 as R + 00. For fixed Reynolds number, the maximum growth 
Gmax(a,p, R )  is largest for a < 1 and p = O(1). By generalizing a scaling argument 
introduced by Gustavsson (1991), we show that for moderate aR, G"""(a,p,R) 
effectively depends on the two parameters k2 = a2 +pz and aR. Using this relation, we 
show that s ~ p , , ~ G ~ ~ " ( a ,  p, R )  = O(R2) at subcritical Reynolds numbers. Finally, we 
show numerically that Gmax(a, p, R) is smooth at points in the parameter space where 
the Orr-Sommerfeld operator has a degenerate eigenvalue or where an Orr- 
Sommerfeld and a Squire eigenvalue coincide. 

The function G(a, p, R, t )  for fixed time, which is plotted in figure 16, can be used to 
analyse growth for localized disturbances. The Fourier transform in the horizontal 
directions of such a disturbance gives a corresponding distribution in a region in 
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wavenumber space. The growth in physical space can be maximized if the growth is 
maximized for each (a, p) at a particular time. In previous work, Henningson (199 1) 
found transient growth by choosing an arbitrary localized disturbance. Using the 
singular value decomposition, it is straightforward to determine the optimal form of 
C(y, 0) and f ( y ,  0) for each wavenumber combination, so that the total energy growth 
is larger. 

Although the global optimal growth is achieved at or near the /?-axis it is also 
important to examine growth for non-zero a: for several reasons. First, away from the 
p-axis the growth function G(a,P, R, t )  is maximized for relatively small t. In the 
simulations of transition of localized disturbances in plane Poiseuille flow, it was found 
that transition usually occurred significantly earlier than the time for the global 
optimum (Henningson, Lundbladh & Johansson 1993). Secondly, nonlinear inter- 
actions are much richer when oblique waves are present than when waves with 
a = 0 only exist. If a disturbance consists only of waves with ct = 0, then no 
wavenumber with a non-zero a: can be excited. 

In our analysis of conditions for no growth for Poiseuille and Couette flows, we find 
that R,, the largest Reynolds number below which there is no growth for perturbations 
of arbitrary amplitude, is the same as that obtained by analysing the linear operator 
9. This occurs because the nonlinear terms drop out of the Reynolds-Orr equation. 
This connection has interesting implications. First, it implies that there can be no 
growth of perturbations of arbitrary amplitude unless there is a linear growth 
mechanism. Secondly, it explains the difference between R, and R, ; the difference exists 
because the governing linear operator 9 is non-normal. (The converse need not be 
true; if the linear operator is non-normal then it is possible for R, and R, to be the 
same.) Other classes of flows for which R, and R, differ include pipe flows (Joseph & 
Carmi 1969) and a convective flow with surface tension (Davis 1969). On the other 
hand, R, = R, for the BCnard convection problem, involving the stability of a 
motionless fluid between two heated plates (Joseph 1965). It can be shown that the 
governing linear operator is normal. 

The recent numerical simulations of Henningson et af. (1993) and Schmid & 
Henningson (1992) demonstrate the importance of transient growth for subcritical 
transition; it is shown that linear mechanism plays an important role for growth of 
finite-amplitude disturbances. The main conclusion is that as soon as nonlinear effects 
transfer energy into waves that experience rapid transient growth, the linear growth 
mechanism is activated. That energy is subsequently used to supply other wavenumbers 
with energy, rapidly moving the flow to a turbulent state. This mechanism results in a 
bypass of the traditional secondary instability scenario. 

The connection between linear stability analysis and stability for the full nonlinear 
problem has been studied previously. For example, Galdi & Straughan (1985) consider 
evolution equations similar to the Navier-Stokes equations. They prove that if the 
governing linear operator is self-adjoint and the nonlinear terms satisfy certain 
conditions, then linear stability implies that there is no energy growth for perturbations 
of arbitrary amplitude. This result can be applied to the BCnard problem. In general, 
one must check that the technical conditions are satisfied on a case by case basis. We 
have not attempted to prove general stability results here. However, we would like to 
stress that there is always the potential for subcritical transition if the governing linear 
operator is non-normal. 

We would like to thank HBkan Gustavsson, Peter Schmid and Nick Trefethen for 
discussions on transient growth and their comments on earlier drafts of this paper. 
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